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The random replacement interaction-by-exchange-with-the-mean (IEM) model, which was proposed previously
as a numerically more preferable IEM scheme, had been employed for investigating the micromixing effects
on the steady-state multiplicity and the relative stability of the oscillatory and stationary state of the Gray-
Scott model (Gray, P.; Scott, S. K.Chem. Eng. Sci. 1983, 38, 29). In the bistable region, incomplete
micromixing tends to largely reduce the attraction basin for the thermodynamic branch, while in the region
where the stable limit cycle exists, it tends to weaken the relative stability of the oscillatory states. Owing
to the random replacement nature of the present micromixing model, a stochastic response behavior is observed
for the resulting limit cycle attractor and the attraction basin boundary on the parameter space.

Introduction

Incomplete mixing can quantitatively or even qualitatively
alter the complex system dynamics when the mixing time is
comparable to the reaction characteristic time.1,2 The impor-
tance of mixing is usually discussed in terms of macromixing
and micromixing. Macromixing involves the hydrodynamic
aspect in the reactor, while various geometrical factors such as
reactor shape, stirrer type, or the presence of baffles all markedly
affect the macromixing. On the other hand, micromixing
involves the related processes with scales below the turbulence
characteristic length. The effects of incomplete macromixing
on complex chemical dynamic systems have been investigated
by some works.3-11 Zonal models are widely employed in these
studies. The micromixing effects had attracted certain research
interests as well.12-26 The most widely employed micromixing
models include the coalescence-dispersion (CD) model and the
interaction-by-exchange-with-the-mean (IEM) model. The IEM
model had attracted a great research interest owing to its
simplicity and containing only one adjustable parameter.1,24

The basic idea underlying the IEM model is to assume the
existence of many small fluid particles in the tank and a mean
concentration field to exchange mass with. The mean concen-
tration is defined as a weighted average of particle concentration
based on the lifetime distribution of the particles (an exponential-
type distribution for a well-macromixed tank), while the mass
exchange rate is assumed inversely proportional to a charac-
teristic mixing timetm. By discussing the time evolution of
reactants in all particles and the mean field concentration at
fixed time interval, and further considering the particle inflow/
outflow terms, the completeness of micromixing can be studied
by varying tm. A smaller tm indicates a more complete
micromixing.
A modified, unsteady-state version of the IEM model has

later been developed to incorporate the dynamic behaviors of
chemical systems and had been successfully employed in various
chemical systems, including the classical chlorite-iodide bistable/
oscillatory systems.19,24 However, the conventional numerical
scheme is not suitable for the systems with a stiff time evolution,
such as the Oregonator.

To overcome this difficulty, a so-called random replacement
IEM model (abbreviated as the R2IEM model hereinafter) had
been proposed recently.27 The major difference between the
R2IEM model and the original IEM model is the adoption of a
scheme similar to the molecular dynamics (MD) simulation,
with which we can work directly on the absolute time scale.
By repeatedly random replacement of a fluid particle from the
stirred tank with a fresh fluid particle, a stationary residence
time distribution of exponential-type can be achieved no matter
what the initial lifetime distribution is (as shown in later
sections). The mean concentration can thereby be taken as an
average over all the existing particles in the tank regardless of
their age. This scheme has been shown equivalent to the
conventional IEM model when the fluid particle number is large,
however, and has avoided the necessity for numerical evaluation
of the integrand involved. This makes the R2IEM model a
numerically more preferable scheme, especially for systems with
a stiff time evolution.
The Gray-Scott (G-S) model is one of the simplest

nonlinear kinetic models exhibiting both the bistable and
oscillatory dynamic behavior.28-30 The G-Smodel corresponds
to the chemical reactions as follows:

The corresponding dynamical dimensionless equations with feed
concentrations (1.0, 0.0) are given by Pearson:31

It is an abstract scheme but reveals key aspects of many real
systems.32 The effects of macromixing on the relative stability
of the bistable and the oscillatory attractors for the G-S model
had been investigated recently.11 The so-called “well-macro-
mixing limit” was addressed. The major role of incomplete
macromixing is found to alter the relative stability between the
stationary and the oscillatory states. The focus of this report is
to employ the newly proposed R2IEM model for investigating
the bistability and oscillatory states for the Gray-Scott model
and the possibility in inducing chaotic behavior. A brief
description of the R2IEM model is given first in the next section.
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U + 2V f 3V (1)

V f product (2)

dU/dt ) -UV2 + F(1- U) (3)

dV/dt ) UV2 - (F + k)V (4)
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The Models

Random Replacement IEM Model. The basic difference
between the R2IEM model and the conventional IEM models
is that the former works on the absolute time scale with the
average concentration over the whole tank taken as

whereCi ) [Ui,Vi]T is the concentration vector for theith fluid
particle andN is the total particle number. The validity for
adopting eq 5 is underlying the assurance of a prescribed lifetime
distribution of fluid particles in the tank. For a well-macromixed
tank, the lifetime distribution of the fluid particles in the tank
with a mean residence timeτ ()1/F, F is the reduced flow rate)
is

whereR is the particle lifetime.33 That is, there is less chance
of finding an elder particle in a well-macromixed tank.
An equivalent statement for a well-macromixed tank is that

an equal probability exists for all particles to leave the tank at
any time.34 This statement forms the mass inflow/outflow
mechanism of the R2IEM model. That is, the steady-state mass
inflow/outflow of the tank is achieved by randomly selecting
and replacing an existing fluid particle by a fresh particle, with
an equal probability, at a time interval of∆τ ()τ/N) regardless
of its age. The age of the remaining particles of agej∆τ will
then be increased by∆τ, and the whole process repeated itself.
If the particle lifetime distribution thus constructed is eq 6, the
validity of adopting eq 5 as the mean concentration, or the R2-
IEM model, is confirmed.
Such a process can be approximated by a continuous

stochastic process, if the time interval∆τ is small enough. The
number of particles of agej∆τ, nj, is the random variable under
investigation. Since the probability for any particle to leave
the tank is equal, the probability for a particle during time
interval dt to be selected and replaced from the statej is nj dt/
N∆τ. At the end of each time interval of∆τ, the remaining
particles in statej will be moved into statej + 1, while the
fresh particles are fed into state 0 with a rate ofQ. Take the
probability of exactlynj particles existing at statej asPj(t) )
nj/N, wherenj ) 0, 1, ...,N. The following probabilities hold
for j larger than zero

or equal to zero.

From eqs 7 and 8, since∆τ andN are both independent of time
and the sum of allPj’s is unity, if N is large, a stationary
distribution of exponential-type (exp(-j/N)/τ) of particles of age
j∆τ will be asymptotically approached no matter what the initial
lifetime distribution is, which confirms the employment of the
scheme.
The above results demonstrate that, by randomly selecting

and replacing particles with a fresh particle at a time interval
of ∆τ for many times, a well-macromixed condition can be
guaranteed. In the present work, it is noted that a stationary,
exponential-type distribution can be established for a system
with 500 fluid particles by less than 2000 times of random

selection and replacement. Such a pretreatment can be referred
to as the “annealing” process usually adopted in molecular
dynamics simulations35 and is employed throughout the present
work.
Gray-Scott Model. In each fluid particle, the evolution path

for the two reactants U and V in G-S model owing to the R2-
IEM scheme can be evaluated as follows:

with the inflow/outflow selection mechanism as described above.
The calculation procedures can be summarized as follows. First,
N particles with prescribed initial concentrations are placed in
the tank. To construct the required exponential-type particle
age distribution, as discussed above, for the first 2000∆τ the
particles are randomly selected and replaced by fresh fluid
particles of age 0 without considering the chemical reactions.
The time evolution of the concentrations are then obtained by
numerical integration of eqs 9 and 10 with Gear’s method during
time interval [0,∆τ]. In the original R2IEM scheme at the end
of the interval∆τ, the mean concentration is evaluated via eq
5. To further improve the accuracy of the scheme, in the present
work, eq 5 is substituted into eqs 9 and 10, and the mean
concentration field is evaluated simultaneously with the con-
centrations in all fluid particles. At the end of∆τ, an existing
particle is randomly selected and replaced by a particle of age
0 and with feed concentration. The integration is then repeated
for period [∆τ, 2∆τ], and so on.

Results and Discussion

The bifurcation diagram for the G-S model under perfect
CSTR limit is demonstrated in Figure 1.11,31 The solid curve
and the dashed curve represent the lower SN and the Hopf
bifurcation curves, respectively. Within the solid (SN) curve
enveloped region, three steady states coexist with the middle
one unstable. Outside the enveloped region, only the washout
steady state can exist. Between the lower SN and the Hopf
bifurcation curves, stable limit cycle can occur whenk< 0.035.
If k is larger than 0.035, an unstable limit cycle will occur.

Figure 1. Bifurcation diagram for the Gray-Scott model under
complete and incomplete micromixing: SLC, stable limit cycle; ULC,
unstable limit cycle.
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Steady-State Multiplicity. In the bistable region, different
steady states can be approached if a different initial condition
is employed. Simulation results withk ) 0.05 andUinit ) 0.2
under varioustm values are demonstrated in Figure 2. Notably,
an incomplete micromixing will largely reduce the attraction
basin of a thermodynamic steady state or thermobranch. That
is, the lacking of efficient interchange of mass among particles
is unfavorable to a thermobranch, and the reactants tend to wash
out easily. This can be explained qualitatively by observing
the reaction kinetics in eqs 9 and 10. With a feed with a
concentration vector (Uf, Vf) ) (1.0, 0.0), the early mixing (less
tm) will raise the mean concentration ofU and reduce the
correspondingV. In the present work, such a disturbance in
concentration vector is to decrease the increasing rate inU, and
also the diminishing rate ofV owing to the product ofUV2,
thereby preferring the thermobranch.
The results with atm higher than 10.0 will cause the

thermobranch to almost vanish, corresponding to a shrinkage
of the bistable region on thek-F plane as demonstrated in
Figure 1. The data with atm less than 0.1 will, on the other
hand, almost coincide with the perfect CSTR limit in Figure 2.
The applications on G-S model with a mixing time less than
0.1 can thereby be taken as well-micromixed. This is an order
of magnitude less than the corresponding value for Oregonator
model (1.0),27 which reveals that the so-called “well-micro-
mixed” limit for a tank is dependent on the chemical kinetics
involved. Parallel conclusions had also been drawn in macro-
mixing studies.9-11

In the literature, with a poor mixing, the thermobranch has
been found to shrink (ClO2-/I-)36 or to expand (BrO3-/Br-/
Ce3+),37 depending on the chemical kinetics involved. The
present results apparently correspond to the former case.
It is noted that close to the two limitingF values forming

the boundaries of the thermobranch in Figure 2 (for example,
200F ) 5.9 and 18.2 fortm ) 5.0), there exists some fuzziness
for determining the attraction basin for thermobranches or flow
branches. This is due to the random replacement nature of the
incomplete micromixing, which will be discussed further in the
last section.
Relative Stability between Oscillatory and Stationary

States.Whenk< 0.035, the limit cycle attractor appears under
perfect CSTR conditions. Under incomplete micromixing, limit
cycle behavior can also be identified. One example is given in
Figure 3. Two things are noticed. First, the size of the attractor

and also the corresponding boundary of the attraction basin
largely shrink astm increases, which is similar to that with
incomplete macromixing.11 The critical k value dividing the
stable and unstable limit cycles regions (denoted as SLC and
ULC in Figure 1) is also affected by incomplete micromixing,
as indicated by the arrows in Figure 1. Such a result reveals
that incomplete mixing, in either micro- or macroscales, tends
to weaken the oscillatory behavior of the system. Second, the
limit cycle trajectory is not unique but exhibits a random-
response behavior. This is also due to the random replacement
nature of the model.
Dutt and Muller38 had reported the coexistence between the

oscillatory state and the stationary steady state. They had found
the limit cycle attractor expands as the mixing becomes better.
This is qualitatively consistent with the findings reported in
Figure 3.
Initial-Condition Sensitive Dynamics. Incomplete mixing

might induce new dynamical behavior for nonlinear dynamic
systems.39 Gyorgyi and Field5 had argued that the experimen-
tally observed chaos may arise from the coupling of the
nonlinear chemical kinetics and the incomplete mixing. Men-
zinger and Jankowski40 had concluded from their experimental
works on the Belusov-Zhabotinsky reaction that the limit cycle
trajectory can be largely influenced by the so-called noise-
induced transition (NIT) mechanism. The origin of their system
noise is generated by external flow and the stirring, which should
be contributed by both macro- and micromixing. Valent and
Adamcikova41 found in their work that the dynamical behavior
in their nitrogen flow agitated bromate-thiocynate is extremely
sensitive to the initial conditions. In this investigation, a new
dynamical behavior that is sensitive to the initial conditions and
the stochastic feed has been identified. Menzinger and Giraudi42

reported the irregularity in amplitude and period of their
oscillatory ClO2- + I- system, which is speculated as being
due to the random perturbation of the limit cycle by discrete
packets of reactants before they have been mixed into the bulk.
In Figures 4 and 5, a sensitive dependence of the initial

conditions on the selection of the thermobranch (Figure 4) or
the limit cycle (LC) attractor (Figure 5) or the washout state as
the final state is obvious as well. It is also noted that, besides
the trajectories themselves, the LC attractor and the thermo-
branch attractor in Figures 4 and 5 are both of a stochastic
response nature. That is, the trajectory would be bound in a
confined space but would never return back and reproduce itself.

Figure 2. Attraction basin for thermobranches and flow branches.Uinit

) 0.2, k ) 0.05.
Figure 3. Limit cycle attractor for the Gray-Scott model under
complete (CSTR limit) and incomplete micromixing (tm ) 1.0). k )
0.03,F ) 0.0086.
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We find that repeated simulations with the same parameter
set (including initial conditions) cannot always reach the same
final state if a different random number sequence is employed.
(This can be easily achieved by using a different seed number
in random number generation.) The reason corresponds to the
stochastic response behavior observed is therefore the random
replacement action of the IEM model. A closer look at the
trajectories of the state evolution in Figures 4 and 5 shows that
in spite of initial conditions under the study all states will quickly
be attracted to a path with a quite narrow span, denoted as the
sensitive region in the figures. Since the random replacement
of particles is occurring with a relatively shorter period than
the evolution time, the feed of fresh particles and the mass
exchange between all other existing particles provide a continu-
ous concentration fluctuations to the evolution state. The
rectangles in Figures 4 and 5 are regions very sensitive to these
fluctuations; that is, if a fresh particle is fed into the system
when the state is evolving across this region, the state may be
pushed to a washout state. Otherwise, the thermobranch or the
LC attractor is reached.
If the initial conditions are set away from the boundary

dividing the bistable and washout regions in Figure 1, the final

state is little influenced by the feed particles. The corresponding
trajectories form no such sensitive regions in Figures 4 and 5.
The attraction basins for different steady states are definite.
Notably, Liu and Scott43 have examined the boundary of the

attraction basin of coexisting bistable states in a forced G-S
model. Their model is taken under the CSTR limit; as a result,
the process is deterministic in nature. Liu and Scott found that
the boundary of the attraction basin would become a fractal at
sufficiently high forcing amplitude, while the period-doubling
bifurcation of one attractor can be identified. This is not the
case for the present R2IEM model, nevertheless, since the
fluctuations introduced are stochastic in nature. The boundary
of the attraction basin is fuzzy as well but is not reproducible
when different random number sequence is employed.
The initial-condition-sensitive behavior thus observed is

therefore a kind of noise-induced random response, which is
interesting and may be of paractical importance since in a real,
incompletely micromixed tank random concentration fluctua-
tions exist everywhere. (Clearly, in a perfect CSTR the feed is
continuous, and all concentrations are instantly leveled off which
thereby provides no fluctuations.) Ruoff22 had proposed a
stochastic analysis to explain the effects of stirring on the
oscillation period of the Belousov-Zhabotinsky (BZ) reaction
in a closed tank. Ruoff assumed that there existed many
excitable particles containing low bromide ion concentration
to ignite oscillations, whose number decreases with increasing
macromixing rate. If the excitable particle number is large
enough (very poor macromixing), chaos can occur. Hsu et al.10

also found complex oscillations of the BZ reaction if the
macromixing is insufficient. In some sense their works can both
be viewed as a kind of fluctuation-induced stochastic response
as well. However, the result reported in the present paper for
the first time identifies such a category of stochastic response
behavior under incomplete micromixing. That is, if a system
had a sensitive region for the state evolution as shown in Figures
4 and 5, it can exhibit an apparently chaotic-like behavior if a
continuous fluctuation is imposed owing to incomplete micro-
mixing.
Role of Statistical Noises.The random replacement concept

used in the R2IEM model is not new, which may be traced back
to Spielman and Levenspiel,44 who had employed a similar
replacing strategy in CD modeling. Fox and Villermaux18 had
discussed the possible statistical noises introduced by the
introduction scheme of fluid particles inherent to the IEMmodel.
They claimed strongly that the proposed IEM model is superior
to the traditional CD model owing to the relatively lower
statistical noises since the mean concentration is evaluated by
intregration and the mass transfer occurs continuously. Actually,
in the IEM model the statistical noise exists as well due to the
replacement action of the fluid particle. The use of random
replacement scheme as employed in the R2IEM model has the
advantage of directly averaging over all fluid particles as the
mean concentration, as employed in CD model. Such a scheme
is more convenient than, and is numerically more stable than,
the implicit integral of the standard IEM model. The disad-
vantage, however, is the greater statistical noise thus introduced.
To examine whether the so-observed dynamical behavior is

the result of the greater statistical noises introduced by the R2-
IEM model, or of the real fluctuations among fluid particles in
the physical space, a set of simulations accounting for the
standard deviations from the corresponding mean concentration
is conducted. The maximum standard deviations for the reactant
concentrationU at the same initial conditions and the system
parameters as in Figures 4 and 5 are approximately 0.09, 0.07,
0.06, and 0.03 when the fluid particle number is 100, 500, 1000,

Figure 4. Initial-condition-sensitive response behavior between two
stationary steady states.k ) 0.05,F ) 0.03, tm ) 1.0. Integration
time 300. The initial conditions indicated by the symbol “W” will go
to washout state and the others to the thermo steady state eventually.

Figure 5. Initial-condition-sensitive response behavior between oscil-
latory and stationary steady states.k ) 0.03,F ) 0.0086,tm ) 1.0.
Integration time 500. The initial conditions indicated by symbol “W”
will go to washout state and the others to the limit cycle (LC) eventually.
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and 5000, respectively. The standard deviation is markedly
reduced by the increase of fluid particle number; nevertheless,
the basic initial-condition-sensitive dynamical features for the
G-S model has remained unchanged. The amplitude of the
statistical noise in the R2IEM model is therefore not attributed
to the observed initial-condition-sensitive dynamics, which
should be induced by the interactions between fluid particles
existing in the stirred tank. This conclusion applies as well to
the conventional IEM model. Furthermore, the statistical noise
inherent to the present R2IEM model can function as an external
disturbance as the heterogeneity introduced by incomplete
macromixing.42
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